If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18y^2-6y=0
a = 18; b = -6; c = 0;
Δ = b2-4ac
Δ = -62-4·18·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6}{2*18}=\frac{0}{36} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6}{2*18}=\frac{12}{36} =1/3 $
| 90+9x-19+111+5x+8+128+7x+3=720 | | 2^5x+1=5 | | 5400=(n-2)180 | | 120=180n-360÷n | | 5=y≠4 | | 5(5x-8)=4(6x-8) | | 4y+7=–2y+1 | | 180=4x+9+(8x+3) | | 5=y•4 | | 2x3=166 | | 5=y;4 | | 8x7=+49 | | 4(2x)-4x=58 | | a-3.5=20.8 | | 90=3x-8+(5x+10) | | 2p–97=p–29 | | 180=100+(2x+10) | | 150=5x+6(2x+8) | | 180=8+(x-47) | | -4.9-23=-10.9m-2 | | 7n+6-4n=-6 | | 15t+4=-49 | | k=2.6 | | 140=x=12 | | 6x+3(2x-22)=78 | | 8/(x+3)=6-x | | Y=400-25x | | 4x+6-x=-2x+3 | | 5x²-1/9=0 | | x/3x3=1x3 | | 5a+27=2a+41 | | 3x+24x=67 |